Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 42354, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176862

RESUMO

Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

2.
Phys Rev E ; 96(3-1): 033201, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346907

RESUMO

We present a new acceleration mechanism for electrons taking place during the interaction of an ultrashort, nonrelativistic laser pulse with a plasma generated at the surface of a solid density target. In our experiments, the plasma is created by a laser pulse with femtosecond duration and an energy of about 1 mJ focused to intensities of above 10^{17}W/cm^{2}. We observe that the electron energies acquired by this mechanism exceed the ponderomotive potential of the laser by an order of magnitude. This result was reproduced and quantitatively confirmed by particle-in-cell simulations, which further revealed that the observed electron acceleration is based on quasistatic electric fields caused by the space charges of ponderomotively preaccelerated electrons. This acceleration process is examined in more detail by a simplified numerical model, which allows a qualitative explanation of the final electron energies.

3.
Opt Lett ; 38(9): 1563-5, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632552

RESUMO

We demonstrate the feasibility of measuring x-ray refractive indices by transparent edge diffraction without recourse to the Kramers-Kronig relations. The method requires a coherent x-ray source, a transparent sample with a straight edge, and a high resolution x-ray detector. Here, we use the aluminum Kα radiation originating from a laser-produced plasma to coherently illuminate the edge of thin aluminum and beryllium foils. The resulting diffraction patterns are recorded with an x-ray CCD camera. From least-squares fits of Fresnel diffraction modeling to the measured data we determine the refractive index of Al and Be at the wavelength of the Al Kα radiation (0.834 nm, 1.49 keV).

4.
Phys Rev Lett ; 109(12): 125002, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005951

RESUMO

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L(p)/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L(p)→0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

5.
Phys Rev Lett ; 108(3): 035001, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400749

RESUMO

Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-µm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator.

6.
Phys Rev Lett ; 106(18): 185002, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635096

RESUMO

When a laser pulse hits a solid surface with relativistic intensities, XUV attosecond pulses are generated in the reflected light. We present an experimental and theoretical study of the temporal properties of attosecond pulse trains in this regime. The recorded harmonic spectra show distinct fine structures which can be explained by a varying temporal pulse spacing that can be controlled by the laser contrast. The pulse spacing is directly related to the cycle-averaged motion of the reflecting surface. Thus the harmonic spectrum contains information on the relativistic plasma dynamics.

7.
Phys Rev Lett ; 104(19): 195002, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866970

RESUMO

An ultracompact laser-plasma-generated, fs-scale electron double bunch system can be injected into a high-density driver/witness-type plasma wakefield accelerator afterburner stage to boost the witness electrons monoenergetically to energies far beyond twice their initial energy on the GeV scale. The combination of conservation of monoenergetic phase-space structure and fs duration with radial electric plasma fields E(r)∼100 GV/m leads to dramatic transversal witness compression and unprecedented charge densities. It seems feasible to upscale and implement the scheme to future accelerator systems.

8.
Rev Sci Instrum ; 81(1): 013307, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113093

RESUMO

The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source.


Assuntos
Elétrons , Filme para Raios X , Calibragem , Modelos Lineares , Luminescência , Aceleradores de Partículas , Fatores de Tempo , Raios X
9.
Phys Rev Lett ; 102(19): 195001, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518963

RESUMO

Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 microJ energy which were focused to an intensity of 2x10;{16} W/cm;{2}. The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

10.
Phys Rev Lett ; 101(2): 025004, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18764188

RESUMO

The propagation in a rarefied plasma (n(e) < or approximately 10(15) cm(-3)) of collisionless shock waves and ion-acoustic solitons, excited following the interaction of a long (tauL approximately 470 ps) and intense (I approximately 10(15) W cm(-2)) laser pulse with solid targets, has been investigated via proton probing techniques. The shocks' structures and related electric field distributions were reconstructed with high spatial and temporal resolution. The experimental results were interpreted within the framework of the nonlinear wave description based on the Korteweg-de Vries-Burgers equation.

11.
Rev Sci Instrum ; 78(8): 083301, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17764317

RESUMO

Particle pulses generated by laser-plasma interaction are characterized by ultrashort duration, high particle density, and sometimes a very strong accompanying electromagnetic pulse (EMP). Therefore, beam diagnostics different from those known from classical particle accelerators such as synchrotrons or linacs are required. Easy to use single-shot techniques are favored, which must be insensitive towards the EMP and associated stray light of all frequencies, taking into account the comparably low repetition rates and which, at the same time, allow for usage in very space-limited environments. Various measurement techniques are discussed here, and a space-saving method to determine several important properties of laser-generated electron bunches simultaneously is presented. The method is based on experimental results of electron-sensitive imaging plate stacks and combines these with Monte Carlo-type ray-tracing calculations, yielding a comprehensive picture of the properties of particle beams. The total charge, the energy spectrum, and the divergence can be derived simultaneously for a single bunch.


Assuntos
Algoritmos , Elétrons , Gases/química , Lasers , Modelos Químicos , Radiometria/instrumentação , Radiometria/métodos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
12.
Phys Rev Lett ; 96(10): 105004, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605744

RESUMO

Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime.

13.
Phys Rev Lett ; 96(8): 085002, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16606192

RESUMO

Close to solid state density plasmas with peak electron temperatures of about 190 eV have been generated with sub-10-fs laser pulses incident on solid targets. Extreme ultraviolet (XUV) spectroscopy is used to investigate the K shell emission from the plasma. In the spectra, a series limit for the H- and He-like resonance lines becomes evident which is explained by pressure ionization in the dense plasma. The spectra are consistent with computer simulations calculating the XUV emission and the expansion of the plasma.

14.
Phys Rev Lett ; 95(19): 195001, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16383987

RESUMO

The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (approximately 10(18) W/cm2) and short (approximately 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

15.
Phys Rev Lett ; 94(19): 195001, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090179

RESUMO

The transport of an intense electron-beam produced by the Vulcan petawatt laser through dense plasmas has been studied by imaging with high resolution the optical emission due to electron transit through the rear side of coated foam targets. It is observed that the MeV-electron beam undergoes strong filamentation and the filaments organize themselves in a ringlike structure. This behavior has been modeled using particle-in-cell simulations of the laser-plasma interaction as well as of the transport of the electron beam through the preionized plasma. In the simulations the filamentary structures are reproduced and attributed to the Weibel instability.

16.
Phys Rev Lett ; 91(1): 015001, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12906545

RESUMO

Fusion neutrons from a heavy water droplet target irradiated with laser pulses of 3 x 10(19) W/cm(2) and from a deuterated secondary target are observed by a time-of-flight (TOF) neutron spectrometer. The observed TOF spectrum can be explained by fusion of deuterium ions simultaneously originating from two different sources: ion acceleration in the laser focus by ponderomotively induced charge separation and target-normal sheath acceleration off the target rear surface. The experimental findings agree well with 3D particle-in-cell simulations.

17.
Phys Rev Lett ; 89(8): 085002, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12190475

RESUMO

Collimated jets of carbon and fluorine ions up to 5 MeV/nucleon ( approximately 100 MeV) are observed from the rear surface of thin foils irradiated with laser intensities of up to 5 x 10 (19)W/cm(2). The normally dominant proton acceleration could be surpressed by removing the hydrocarbon contaminants by resistive heating. This inhibits screening effects and permits effective energy transfer and acceleration of other ion species. The acceleration dynamics and the spatiotemporal distributions of the accelerating E fields at the rear surface of the target are inferred from the detailed spectra.

18.
Opt Lett ; 27(17): 1570-2, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18026509

RESUMO

We describe a novel scheme consisting of two deformable bimorph mirrors that can free ultrashort laser pulses from simultaneously present strong wave-front distortions and intensity-profile modulations. This scheme is applied to the Max-Planck-Institut für Quantenoptik 10-TW Advanced Titanium-Sapphire Laser (ATLAS) facility. We demonstrate that with this scheme the focusability of the ATLAS pulses can be improved from 10(18) to 2x10(19) W/cm(2) without any penalty in recompression fidelity.

19.
Artigo em Inglês | MEDLINE | ID: mdl-11089120

RESUMO

Hot electrons generated upon interaction of p-polarized 130 fs laser pulses with copper and penetrating into the target material are characterized with respect to their energy distribution and directionality. "Experimental" data are obtained by comparing the rear-side x-ray emission from layered targets with Monte Carlo electron-photon transport simulations. Theoretical electron energy distributions are derived by means of a one and a half-dimensional particle-in-cell code. Both sets of data consist of a two-temperature distribution of electrons propagating in a direction almost perpendicular to the target surface. The "experimental" data contain a considerably higher population of the lower temperature electrons. The discrepancy is explained by the intensity distribution of the laser spot. The results are used to design an experiment for demonstrating photopumping of cobalt with copper Kalpha radiation. A 10 &mgr;m copper foil is backed with 1 mm of polyethylene (PE) followed by 10 &mgr;m of cobalt, the rear-side Kalpha emission of which is measured. The PE layer prevents fast electrons from reaching the cobalt. Comparing the cobalt Kalpha emission with that of nickel, which is not photopumped by copper Kalpha shows enhancement by almost a factor of 2.

20.
Opt Lett ; 22(10): 733-5, 1997 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18185644

RESUMO

We present results of an experiment in which x rays from an optical-field ionized plasma are generated under well-controlled conditions in a low-pressure gas cell. In this way high-density effects such as electron heating, collisional ionization, and ionization defocusing are avoided. Using N(2) as the medium, we show that many features of the soft-x-ray emission follow theoretical predictions. In particular, higher x-ray intensity is observed on most lines for circularly than for linearly polarized light. However, several Li-like lines show anomalously strong emission for linear polarization. Mechanisms that may be responsible for this effect are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...